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THEORETICAL LIFT AND DJiMPING IN ROLL AT SUPERSONIC SPEEDS OF THIIN SWEPTBACK
TAPERED WINGS WITH STREAIM.WWE TIPS, SUBSONIC LEADIING EDGES,

KND SUPERSONIC TRAILING EDGES -

By FEASK S. MALVESTUTO, Jr.,KENNETH MABGOLIS, andEEEWIEETS. RIBSER

SUMMARY

Qn the basis of linearized supersonic-jiow theory, generalized
eguations were derirecl and calculations made for the lijl and
damping in roll of a limited series of thin sweptback tapered
wings. Results are applicable to wings m“ih streamwnketips
and for a range of supersonic speeds for which the u<n-gis
U~ho~.Jyc~n~.ined be~wetnthe Mach cones spi-ingingfrom the
u~ingapex and from the trding edge of the root section. A
further limitation is th.a.tthe tip Mach. lines may not intasect
on the wing.

For the portion of the wing external to theMach cone~spring-
ing from the leading edge of the wing tips, the pressure distri-
butions for lifi and roll preciously obtainedfor the triangular
wing are calid. For the portion. of the wing contained within
the wing-tip Mach cones a satisfactory approximation to the
exact pressure distributions was obtained by application of a
point-source~isttibutim methoddecelopedin ATACMTN1$382.

A setis of design curres are pre~ented which permit rapid
estimation of the lij?-cum’e slope & and damping-in-roll
deriratice (?lpfor giren calues of aspect ra&io,taper ratio, Mach
number, and leading-edge sweep.

INTRODUCTION

On the basis of linearized supersonic-flow theory the lift-
curve slope (?L= and damping-in-roll derivative CIPof thin
triangular wings with Iarge vertex angles were treated in
references 1 a.ncl2. In reference 3 stability derivatives in-
cluding C!= and CIPvrerepresented for a series of sweptback
wings tapered to a point. The present a.na.Iysisis an exten-
sion of the investigation reported in reference 3 in that, for
a simihr range of Mach numbers, the derivatives CL= and
d% are evaluated for a seties of sweptback wings with finite
strea.mwisewing tips. The wings were derbred by cutting
off the pointed tips of the sweptback wings reported in ref-
erence 3 along lines parallel to the free-stream direction.
The introduction of the fite wing tip causes an alteration
of the pressure distribution over the portion of t-he wing
contained within the Mach cone springing from the Ieading
edge of each wing tip. The wing-tip disturbances are con-
tlned to these tip Mach cones and do not affect the remain-
ing portion of the wing.

For the case of a wing at an angle of attack the exact
soIution for the pressure distribution in the tip region has
been reported in reference 4 by the method of superposition
of linearized conicaI flows. This solution (although inte-
grated therein for the tip loss in lift for some cases) does not
lend itself readily to the evaluation of the lift-curve slope for
families of wings. In the present report the press~e dis-
tributions in the tip region for lift, ancl for rolling as well,
are determined to a close approximation by the application
of the method useclby Ev-rard in reference 5. The complete-
wing pressure clistributiona are integrated amdytic.atly to
obtain the lift-curve slope and damping in roil for general
families of wings.

The results of the analysis are given in the form of gen-
eralized equations for C!a and C?Ptogether with a series of
design curves from which riipid estimations of CL= and Clp
can be macle for given values of aspect ratio, taper ratio,
Mach number, and leading-edge svmep. Some illustrative
variations of t-hederivatives with these parameters are also
presented. The deri-mt.i~esare valicl only for a range of
supersonic speeds for which. the wing is entirely contained
between the Mach cones springing from t-hewing apex and
from the trailing edge of the root chord. An added re-
striction (which, for practical configurations, materially
limits the range of Mach numbers for very small aspect
ratios onIy) is that the Mach lines emanating from the wing
tips may not intersect on the wing.

SYMBOLS

x, y, .s Cartesian coordinates of an arbitrary point
& T x-coordinate and y-coordinate of a point source

in XY-pIane
?..!iy?li, Wi induced flow velocities along X, Y, and Z

body axes (see fig. 2 (a))
?/, U’,w’ incremental flight velocities aIong X, Y, and Z

stability axes (see fig. 2 (b))
u, ‘u oblique coordinates in plane of wing the axes

of ,vh.ich are paraIIeIto Mach lines

(u=g(g-–Bq); ‘o=g(f+Bq))
I&, tl~ oblique coordinates of a particular point on

surface of wing (see fig. 13)
395
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v
cl

P, Y,r

M
M’
N

‘fight speed
angle of attack (w’/V)
angular velocities about X-, Y-j and Z-axes,

respectively
stream Mach number (V/Speed of soun~)
pitching moment
yawing moment
Mach angle
cotangent of Mach angle ( ~~)
angle between leading edge and axis of wing

symmetry (see fig. 1)
leading-edge sweep (90”–E)

angle between trailing edge and axis of sym-
metry (see fig. 1)

tan e
=—=oOB

m tan p

7L===1-(1-A)W

wing span
wing root chord
wing tip chord
wing area.
taper ratio (cc/c,)

“(
b2 zb

aspect‘at10F=(l+x)c, )
geometric phrarneterof wing

(2c,eo _ 480 4’m
b A(l+h)=Al?(l+x) )

region of external flow field (see fig, 3)
region of wing (see fig. 3)
slope of stream sheet in exte&al flow field

measured in pIanes for which q= Constmt
(equivalent to symboI.L used by Evvard)

perturbation veIocity potential on upper
surface of wing or of stream sheet in
external flow field

Iocal pressure difference between Iower and
upper surface of airfoil, positive in sense of
Iift

density of air .-.

(), ”
P

pressure coefficient —
;PV2

complete elliptic integraI of second kind with

(s
r/2

modulus k
o

~/1—ka Si112.S dz
)

E“(m)=&

F’(m) . compIete elliptic integraI of first kind

(sw/2ds
modulus k

o III —kz sin2z)

2(1 - m?
~(m) ‘(2_ m~~’(m) – m’F’(m)

L lift
L’ rolling moment

Ch
L

()

lift coefficient —
~ p~.72~

c,
L’

rolling-moment coefficient

()
;pv2~b

()
c~a = ~ .4

cl,= 3

.( )
ap$ &

Subscripts:

with

0,1,2, .-. . particular regions of the wing or external flow
fields -whenassociated with &or SD

ex, in region of the wing external to the wing-tip
Mach cone and within the wing-tip M~ch
cone, respectively

( L ( )P ““ when associated with @, P, and C!! indicate the
velocity potential, pressure, and prcssum
coefficient for angle. of attack ancl rolling,
respectively

ANALYSIS
SCOPE

The sweptback wings considered are sketched in figure 1.
In the following analysis anclin the figuresthe wing plan form
with wveptback trailing edge (fig. 1 (a)) wilI gcnemlly be
considered and sketched as the. typical wing, but the results
of the anaIysis are equally valid for the wing plan form with
the siveptforward trailing edge (fig. 1 (b)). The orientation
of the.wing with respect to a body system of coordinate rtxcs
used in the analysis is indicated in figure 2 (a). The surface
velocity potentials, the basic pressure distributions, ancI the
stability derivatives are derived with respect to this system.
Figure 2(b) shows the wing orientccl with respect to the
stability-axes system. To the first order in a (the angle of
attack) ,“the derivaiiyes CL. and Clr ha-m the same value in
the stability system as they do in the principal l.)ody-nxes
system (shown dashed in fig, 2 (b)).

The analysis is limited to wings of vanishingly smW thick-
ness that have zero camber and are not ya-wcd with rcepcc(i
to the stream direction. The derivatives arc vaIid ordy for a
range of supersonic speeds for which the wings arc ahvays
contained between the Mach cones springing from the wing
apex and from the trailing edge of the root section of the
wing. (A wing traveling at speeds for which this condition
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[a]
(a) Sweptbsck tmifing edge.

FIGUREL-Srreptbsak W- with stresnmiae tips nnd sweptback or sweptforwerd trsilkw
edges. N’otethat treiI@ edge is always fucIfued at amngIe ~eater thsn the .Msch angle.

(b)

i
x

(b) Sweptforward traflk@ edge.

FIGURE l.—ConcIuded.

k satisfied is now commonly referred to as a wing with sub-
sonic leading edge and supersonic trailing edge. The terms
%.ubsonic Ieading edge’j and %upersonic trailing edge” refer

v

w;>z
t v<,Y

1

(a)
v’, Y

/’

(a) Xotatiin end body axes rrsed in enelysis.
(b) Stabificy axes. Velocity, form, and moment arrangement h prfmfpal-body-=es system

is identienl to that of stabfli~y+ixes system. (TMncipsl body axe-rdsshed in for eom-
parkon.)

FIGURE Z-system of exes and rwociated data.

to the conditions that the stream component normaI ~o t-he
leading edge is subsonic and the component normal to the
traiIing edge is supersonic.) ti added restrictionk that the
Mach lines ema.na.tingfrom the wing tips may not intersect
on the wing. These conditions expressed mathematically
as restrictions on B cot ,i are as follows:
For B.4(1 +x) z 2

BA(l+X)
H1+W4(1+=B cot As 1

and for lL4(l +k)<.2

B.’(l+x) BA(l+A)
BA(1+X)+4(1-A)SB cot ‘=4–BA(l+A]

BASIC CONSIDERATION’S

The evaluation of t-hecleri-rat-ivesCL=and CI, essentially
involves a kno-ivledgeof the Lifting-pressuredistribution over
the wing associated with angle of attack for CL=and with
roiling for CgP. The lifting-pressure coefficients can be det.er-
rnined from the -well-known relationships

or

(1)
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where r#(x,y) is the velocity potentiaI on the upper surface
of the wing under consideration. The potential @(z)y) can
be determined by a particular distribution of surface singu-
larities (sources or doublets) which will allow the veIocity
potential to satisfy the linearized pmtial-diflerentiaI equation
of the flow and the boundary conditions that are associated
with the wing in its prescribed motion.

For the purpose of evaluating the pressure distributions,
the wings under consideration can be imagined.as consisting
of two portions—the segment of the wing external to the
Mach cones springing from the leading edge of the wing tips
and the segment of the wing within the wing-tip Mach cones.
(the wing-tip region), The pressure distribution for the
&g region external to the wing-tip lMach cones is precisely
the same as the pressure distribution for the corresponding
section of the triangukir wing for the same value of Mach
number and leading-edge sweep. For angle of attack and roll
the associated pressure distributions for the portion of the
wing external to the wing-tip cones have been evaluated in
references 1 and 2.

The pressure distribution within the wing-tip Mach cone
remains to be determined. For this region the point-source-
distribution method of Evvard reported in references 5 and
6 maybe applied to the evt-duationof an approximate surface
velocity potential from which the pressure distribution may
be determined. If the considerations of reference 6 are
folIowed, the exact linearized surface velocity potential for a
Iifting wing is given by (see fig. 3)

~=: SS a d( dq

‘W (0+1+2+3+4) ~(~ — &-~2($/ — q)2—

y SS ud.$dq
r

(2)
SD (1+2+2+4+6) ~(% — ,&~2(Y- ~)2

The first integral of equation (2) expresses the contribution
of the sources distributed over the region of the wing located
within the forecone of the point (x,y). The second integral
expresses the contribution of the sources over the external
flow fields that i~uence the point (z,y). For the influencing
external flow fields the strengths of the source distributions

FIOUItE3.–Sketeh of wing regions SIVto. . . . 0 and sxternal flow regions SD O, . . . Q.

are directly proportional to u, the component sIopc of tho
stream Iinesparallel to the.free-stream direction. It is shown
in reference 6 that under certain conditions the contribution
to the potential of the source distribution on the wing surfs.cc
may in part be effectively canceled by the contribution to
the potential of the source distribution of the influencing
external flow fields. Application of this knowledge to the
wing considered herein (fig.’ 3) gives the following relation-
ships, which are analogous to those obtained for the yawed
wing in reference 6:

SS_- .ad~dq
(3)

%v(2+3+4) ~l(z— g)~—llz(y— q)~

SS=. CYd~ dq

%7(1+3) J(2–.&.B’(y-q)’
(4)

The substitution of equations (3) ~nd (4) into equation (2)
gives the surface velocity potential for the wing-tip region:

~=: SS a d~ dq

%’,o ~(ct — .gy—qy- #--

v SS adl dq—
u f%,s ~(x– $)’–B’(y–q)’+

v SS cd~ dq—
lr SD(3+4) &?- ,g)~-lqy— q]z

It is pointed out in reference 6 that, inasmuch as

(5)

u and a
have ~he same sigu, the second and ~hirclintegrals of equa-
tion (5) will tend to nullify each other. These integrals
wi.Ualso contribute relatively less than the region S’w,oto
the potential in the tip region because of the relatively large
distance of the fidds SW,Sand. SD(S+l)from the tip region.
As the areas SW,8and S’D(S+4)become smaIIer (Mach lines
approaching the leading edge of the wing), their contribution
to the potentiaI will tend to become negligible. On tho
basis of these considerations the second and third intc.grak
of equation (5) were neglected and the surface velocity
potential. for the wing-tip region may now be expressed
approximately by

~=: SS adt dq

%r,o J(X — .&.B2(y-#
(6)

DERIVATIVE CLa

The derivative CL.for the entire wing may be expressedas

c=m=Aba (CL,.+C~~m)= (CL=),=+ (Cfi.) ~fi (7)

where the subscripts ax and in refer to the part of t.hcwing
external to and within the wing-tip Mach cones, respectively.
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Regiori of wing external to wing-tip Maoh cones,—l?or the
region of the wing external to the tip Mach cone, the pres-
sure distribution is the same as the pressure distribution
for the corresponding portion of the t,riangula.rwing. This
pressure is given in a nondimensional form by the foIlo-iving
relationship:

(8)

Lo

\ <
--- ..I@l]

.Q

z \
*
u~&

\

g

b

.7

.6
0 .2 .4 .6 .8 Lo

m

FIGCREL—Variation of the elliptic integrrd factors Err(m) and Z(m) with m.

sure

‘Wng- f@ region

Equation of EG z=B
()

b
yv d-2.9~

Eqnationo[EflZ Z*

Intersection of EQ and Hlt $==
(Bbeo–2s#~+b) tan 6

29”(B tan .5+1]

F:GUEE S.-Sketoh ot right panel of sweptback wing showing an elemental triangle and
data pertinent to limits of integration.

where Pis proportional to the sIope of a ray from the apex

of the vzingthrough the point (z,y); that.is, V=ZS The cpm.n-i%x
tity E’(m) is the complete elliptic integral of the second-
kind that gives the va.riat.ionof the pressure with the ratio
tan ●

—. (See fig. 4.) Integration of the lifting pressure ex-tan J1
pressed by equation (8) over the wing area external to the
tip Mach cones wUIproduce the resultant Iititfor this portion
of the wing. The general conical form z“j(~) noted for the
pressure reIationahip suggests the integration procedure
empIoyecI in reference 3. Thus the external region of the
m@ is imagined as composed of an infinite number of
elemental triangles (see fig. 5) and the lift is then deter.nined

for an elements.Itriangular area
(*zldO The lift coeffi-

cient for the external region may then be e~reesed as follows
(for Iimits of integration, see fig. 5):

2=—
s [s 1((7p=)adS+sneabm (C.a)ad&’

Rmim
OHG 0GJ3

(l+n)b–%Oc,

= 4C,%J%J
n(li-m)6Hm@acF dv ~

SE’(7?I) ~ {1–7W)’.J1–/

(1+ m)’b’a 1
s

dv
SE’(m) (9}

C+n)b-zsoc. (1+ nW)2~=#
Xm-

Region of wing within wing-tip Mach cones,—The lift
coefficient ~~i~for the region of the vr~mwithin the wing-tip
Mach cone is evaluated by initially determining the surface
velocity pot.entiaI 4. For lift the appropriate potential is
given by equation (6); that is,

(4J).=qJ’s.,o./(z-;:22(Y-.y
The eva.hmtion of this equation carried outi in
yields

d~4) =2 T’a 2 @y+ ?nZ) (b–2y)
Cl r B(I + m)

The lifting-pressure coefficient is then obtained
stitution of equation (10) into equation (1):

appendix A

(1o)

by the sub-

In equations (10) and (11)
abIes z ancly are restricted
the wing-tip Mach cones.

it shouId be noted that the va.ri-
to the portion of the wing tithin
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Integration of the
portion of the wing.
tion, see fig. 5):
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lifting-pressure coefficient defined by equation (11) will give the resultant Iift coefficient for this
The lift coefficient for the wing-tip region may then be expressed as follows (for limits of integra-

(12)

The result of carrying out the operations indicated in equations (9), (12), and (7) yieIds the following simplified expression
for CL. of the entire wing in terms of m, n(>O), A., and u:

c`.=&{(l::,~,~[sh-'n-sin-1('+m)(n:Ti%cOs-’1+m:7:m-1)
[@n(m– 1)+ ?Y@- l)]J1+ m

(?n+n)(?z?– 1)(W– 1)
4’}+

(n+ 4(?n–70+2(1 –cJ+m+n_
*m{= ,0s-’

1+mn+a(?n– 1)+
(l+n+a)(?n+n) (~ _ja/2 COS-l m+%

(l+?n)(l+n)-a(l -?n)
Z(?n+n)(l – ‘@(l+n) ~(”+~~]

When m= 1, equation (13a) reduces to the following expression:

(13a)

(13b)

DERIVATIVE C{p

The derivative Cl, is evaluated in a manner sindar to that used for C&.
Region of wing external to wing-tip Mach cones.—For the region of the wing external to the wing-tip Mach cones, tho

pressure cmficient is obtained from reference 2 as

2pI(m)(?z xv .
(%),= v

()H
(14)

The corresponding roIIing-momenticoefficient is expressed by

C,m= “
;pV2Sb

The evaluation of equation (15) is simpltied by empIoying the integration procedure used for
the rolling-moment coefficient of each of the elemental triangukr areas (see fig. 5) is given by

dCl,C= –~dC~m

-l

Cza. The contribution to

(16)
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where WOis the latera.Idistance of the center of pressure of
an elemental triangIe from the X-axis of the wing and dCLC
is t-he lift coefficient of an elemental t.rimgnIar area. The
analysis of reference 3 shows that for a pressure distribution
of the form z~(r), which is the form of the pressure of equa-
tion (14), the lift of a.nincremental triangle can be expressed
as

(17)

where xl is the height and AS,= t-hearea of an eIemental tri-
angle. The quantities xl and yOgiven in termsof v and other
parameters may be expressed a.s follows (see Q. 5):

3 c,
— eOv

‘O=Z I—nv

Region OGE
b(l~m)

‘l=2eo(l + mv)
I

(18)

3b(l+m) vyo=
8 l+mv J

Use of equations (16), (17), and (18) leads to the following
integral expression for Cl,=:

b3(l + m)’I(m)p 1

s

Pdv
1617~ (I+na)b-zeo+ (1+ mvy.J=yF

n (1-hn)b-i-27nOOCr

(19)
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Region of wing within wing-tip Mach cones.—For the
region of t-he wing within the wing-tip Mac-h cones, the
rolling-moment c.oeftlcient is e~aluated by employing the
approxin.mte surface velocity potential given in equation (6);
that is,

The veIocity potential given by equation (6) can be expressed
so as to apply to the rolling wing by considering the IOCSI ““
elope of the airfoil surface with respect to the flow direction.
For the thin wings of zero camber considered herein, the
slope at any lateral station y is the Iota.1angle of attack of
the wing and is equal to p~/V. Substituting pq/V for a in
equation (6] gives the approximate linearized surface veloc-
ity potent,iaIfor the rolbg wing; that is,

The evaluation of equation (20) carried out in
yields

(20)

append& B

p [2yl?(2m+l)+b13(m+ l)-2mz] ~f2(By+mz) (b–.2y)
(+)’==

[(l+?n)q ~1’

(21)

Differentiation of the potential given in equation (21) yields
the pressure distribution for the rolling wing:

p r}8P803@oz+y(l–2m)–;(l+m)
b
3–Y

. –Tr
3(l+m)~f(&c+y) (1+m)

(22)

In equations (21) and (22) the variables x and y’ are re-
stricted to the portion of the wing within the wing-tip Mach
cones. The roll@-rnoment coefficient for t-heregion of the
wing within the wing-tip Mach cones can be expressed as
folIovm (for hits of integration, see fig. 5):

=-&JJ_(%n)2Y’-
EGF

The sum of e.xpressione(19) and (23) is the rolling-moment coeflkient for the entire wing. Evaluating the integrals in these
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pb
expressionsand then differentiating with respect to —~Vgive the following derivative Ci, in termsof the parameters m, n(> O),A,

and a:

cl _.I(@A u4n(2n2+ 13) w4(4n2+ 1) Sin.l (l+@ (nz- 1)+ u(mn+l)_sti_ln _(4~2+ ~)~ ~0~-1 w(~– ~)+ ~~+ l__—
n 8 { 6(n2– 1)3 ‘2(1 —n’)7/2[ w(m+n) 1 2(1 — myz m+n.

~4Tti(l-w+m) [n(I+m–w)(6n4+ 10n?– 1)+ 3(1 – 9n2– 2n4)(n+ mn+mfJ)]+n(2nz+ 13) fn+mn+@2
6(n2– l)3(m+n)s

~-(m+f-t)+i(ti-i)j+ “” ““ -- “-””””“-. ““”“-

(l–U+m)[nZ(l-U+ m)(l-10Tn2-6m’) +3(1 -9m2– 2m9 (n+ mn+ ma)] - 7n(21n2+ 13) (n+ fmfl+ nuo)’
6(7n– 1)3(1+ m)3i2(n+ m)a

.

“1d(w+- 1)Kl+@ (l+n)+4m- i)]. –
A

(
–4(n+l) (l+m–a)(l–m) (1+5 nt)+5 [(1–n+2m)(n+l–kj (l– TT0’+2m(n+1)*(1 +3m)l ~m(n+u),_

6m(l + m)3/2 3(1 +n)’(1 – m)’(m+n)a

(w– 1)’+ (n’- m)]312+
5(l+n–a)2(l –n+2m)+4(l+n) [(2–3a+2@(l+n)+2@ n(n–?n)-(2+n) (l-~) -?n(l+u)

8(l+n)S { (m+n)’

(n+l+u)’
~~1 +~ Cos 1

_l m(l+ti)+(2+n) (l-u) -n(n-m) +
(n+l+a)(?n+n)

(l+3m)(4m2+l) l+mn–~(1–m)
{— —&+n-1) [(l+m) (l+n)+~(m–O1-*cOs

_, 6J(m–1)+ nm+ 1
~ (m-l-n)’ rn+n })

(24a)

I?or m= 1, equation (24a) may be expressed in the foIlo-iving manner if the tip region is negIectcd (see section entitled
“Results and Discussion”):

({4AM 4(n–l+w)
c,p=–~ 105@(1 +n)3 k@J2+ 10Tz+ 23)+ 3Lo(5u-4n– 24)] +

3a3(4n2+l)+48(n- l)3+8(n-l)2(9-8n) w+2~2(n-l)( 12n2-32n+l 5))4/n-l+u+
12&@l?–1)3

a3(l+4N)

(

2n–2+u
sin-% -sin-l

)
a3n(l3+ 2n’)

8(1 –n’)7J2
—

u 24(n2– 1)3 )

)~ l+n ‘

(!!4b)

RESULTSAND--DISCUSSION

Formulas have been derived for the evaluation of the
derivatives CL. and Cl, based upon considerations of the
linearized supersonic-flow theory. For the wing regions ex-
ternal to the tip Mach cones, the exact linearized pressure
dktributions for the derivatives were obtained from refer-
ences 1 and 2. For the portion of the wing within the tip
cones, the derivatives were approximately evaluated by ap-
plying the method used by Evvard in reference 5.

Although the exact pressurg distribution in the tip region
is not conical, the approximate pressure distribution given
by the present method (equations (I 1) and (22)) turns out
to be conicaI (in the generalized sense) with respect to the
image of the wing tip reflected on the YZ-pla.ne. (See fig. 6.)
That is, if z’ and # represent coordinates with respect to the
image point, the pressure distribution in the tip region is of
the form, for lift

()P=j, $

and, for rolling

‘=’’($)+’”(9
In figure 7 the pressure distribution for lift is shown along a
chordwise section A–A and a spanwise section B–B, which
cut through the wing-tip region. Tar thk region of the
wing, a comparison is shown of the approximate pressure
determined herein with the exact pressure distribution com-
puted from reference 4. The comparison indicates the sat-
isfactory accuracy of the approximate pressure-distribution
relationship, The almost negligible lift in tho tip region
and the abrupt drop in lift across the inboard Mach line from
the wing tip has already been pointecl out in reference 4.

The existence of an abrupt drop in lift in crossing the wing-
tip Mach line may be reacli~yinferred from Evvarcl’s equation
(7a) of reference 7. (Equation (7a.) is strictly applied.dc to
a wing with one supersonic leading edge. The leading ccIgcs
of the wing under discussion, however, are subsonic. The
general argument leading to equation (6) herein may be
used to justify an approximate application of equation (7a)
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FIGUBE6.-Sketch of right pond of wing indfWfng conical flow nature of wir@ip region
with respect to the frmrgepoint.

of reference 7 to the present wing.) Equation (7a) may be
written

This equation gives the pressure coefficient at- an-y point
(u~;~~j, expressed in oblique coordinates. (See fig. of
append& A.) The second term in equation (25) contains

‘uiCv’) that in~oIves the slope of t-he sidethe factor 1— dl?w
dm’(uw). ~~

‘dge dv ~ us any abrupt break in t-hesIope of the side

edge gives rise to a discontinuity in the.pressure distribution

L’4 1 I 1 i
— Exact sakdrnn I
-;--- Approximate solufion
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(a) Section A-?J y= Crmatimt.
@) Seotfon S-S; z= Constant.

FIGURE7.-C!hordwfss and sprmwfse pressure dfstributiom- for lfft in eectional planes through
the wing-tip region.

on crossing the Mach line emanating from the break.
In particular, when a portion of the edge is para.Jlelto the
stream direction (as is the case for the streamtise wing tip)

Czu;(vm) .“
the due of dl,w IS unity. Hence, the term containing

~_du:(vnr)
dow

is zero and the lift is found to drop to a small

magnitude on crossirg the tip Mach line in the wirg-tip
region.
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Figure 8 shows the chordwise and spmnvise pressure dis-
tributions for rolling. A similar situation of large fhite
drop in pressure across the wing-tip Mach line exists for
rolling ardogous to the lifting case. (See reference 8.)
The interesting result obtained is that the rolling pressure is
negative in the wing-tip region. This behavior is due to the
fact that the sign of the pressure in the wing-tip region is
affected only by the angIe of attack of the leading edge of
the plan form on the opposite side of the rolI axis which for
positive roll is negative. (See reference 8.)

3.0 1 1 1
— Exact sdufkm
----- Approximate soiufion

2.0
\

3N 1.5
b \

b4/o
~ “NQ. ~ .

t
)
1
I

.5 8
8

0
t
1
L. ----- .----,. -----

-.5 ‘a]
0 .2 .4 .6X-I .8 Lo

(a) Section A-* #= Constant.
(b) Section S-S; z= Constit.

~GURE S.—Chordwise and spmmise pressure distributions for rolling in sectiensl pIanes
through the wing-tip region.

The exact soIution for the rolling-pressure distribution in
Lhewing-tip region has not at preeent been determined, In
view of the good agreement between the appro~<matc and
exact pressure distribution of the lifting case, it is beliovcd
that a compa.rabIy good agreement should exist for the
rolling case. The present approximate met.hod should be
adequate for determining the integrated. lift and roIIing
moment, especially since the pressures in the tip region are
smd. For a practical evaluation of the derivatives, t.hc
wing-tip regions may be completely neglected and tho
resuhing error in CLUand CIPwould be well under 5 pcrccnt
compared with the values of these derivatives obtained from
the method used herein,

A seriesof generalized design curves me presented in figures
9 and 10. For speci6ed values of aspect ratio, taper ratio,
Mach number, and Ieading-edge sweep, t.hc derivative CL=
may be readily estimated from figure 9 and t,ho derivative
Cl, from figure 10. The dashed portions of the curves
require special mention. These portions correspond to wing
configurations for which fihe traiIing edge is subsonic, in
vioIation of one of the basic assumptions (SCCsection entitled
“Scope”), ~nd have the significance of an upper limit beIow
which thg true values of the derivatives would lie for the
condition of subsonic trailing edge. This circumstance is
explained and the limitations on the dashed portions of the
curves amplified as follows: In the present calculations the
basic conictd pressure distribution (except in the tip region)
was assumed to persist up to the trailing edge. This pro-
cedure is correct for a supersonic trailing edge; but., for a
subsonic trailing edge, it neglects the contribution of a region
of disturbance due to the edge. This region of clisturba.nce
lies between the traiIing edge and the Mach lines from the
apex of the trailing edge. The neglected subsonic-edge
disturbance is in the direction to reduce the lift and the
rolling moment. Therefore, the dashed portions of the curves
in figures 9 and 10, which correspond to regions of the graph
for which the trailing edge is subsonic, overestimat.o the
vaIues of lift or roIIing moment. The error is small when
the disturbance region is small (sections of clashed curves
adjscent to solid sections) and is larger when the distiurbancc
region is large (sections of dashed curves remote from solid
sections.). Equations for the quantitative evaluations of
the trailing-edge disturbance for the lifting case (provided
that the Mach lines from the trailing eclge of the center sec-
tion do not intersect the leading edge) are given in reference
4, together with two exampIes. The major part of the sub-
sonic edge correction is given by equation (55) of that refer-
ence. The app~icationof this correction to the design charts
for C~apresented herein affects onIy a small portion of the
dashed sections of the curves immediately adjacent to the
solid sections and resuhs in unimportant changes to the
vahles of Cfim.

Specific variations of the derivatives CL. and Clv with each
of the parameters-aspect ratio, taper ratio, Mach number,
and leading-edge sweep—are presented in figures 11 and 12,
respectively.
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1 CONCLUDING REMARKS

Based upon the .concepts of linearised supersonic-flow
theory, the lift-curve slope CL. and damping-in-roll deriva-
tive Clphave been evaluated for a limited seriesof sweptbt-ick
wings (with streamwise tips) of arbitrary taper and sweep.

The investigation was limited to a range of Lh!la,chnumbers
for which the wing is completely enclosed between the Mach
cones springing from the wing apex and from the trailing
edge of the root chord of the wing. An added restriction is
that the lhfach lines from the wing tips may not intersect on
the wing.

The r.wxdtsof the analysis are presented in the form of
generalized design curves for rapid estimation of t-hedcriva,-
tives. Some illustrative variations of the derivatives with
aspect ratio, taper ratio, ““Ma.c’hnumber, and leading-edge
sweep are aIso presented.

*

LANGLEY AERONAUTICAL LABORATORY,

NTATIONAT. ADVISORY CONIIVIITTEE FOR AERONAUTICS,

LANGLEY FIELD, VA., February 15, 1949. I
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APPE~I)IX A

EVALUATIONOF POTENTIALFUNCTIONFOR LIFT

The integral expression for the potential

~.=_h JJ d~ dq

%-,o @-&- B’(g-7J’
(Al)

u

is easily evaluated by use of an oblique Uiocoordinate system,
the axes of which lie parallel to the Lfac.h waves. (See
reference 5.) The transformation equations are

%=$(f—Bq)

;’ w-m)‘1’=—

E=gCD+-’4

1
q==Q (u—u)

(Az)

When the ~ppropliate substitutions and simplification are
performed, equation (Al) becomes

(tP)Q=&SS dudu
(A3)

%, o \/(um—U)(V~ —‘v)

where UFancl ,vWare the coorchmtes of the fielclpoint and are
related to t-hex,y system as foIIows:

uT=% (x-BY)

aw=~ (x+By)

(A4)
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FIGGB.E13.—SlcetcLtof wing showing region of integration (area SW.0) for the ewhmtion of
t-hesurface veIocity poterdia~ for IKt and roll

The limits of integration are readily obtained from figure 13
and the pot entiaI function may then be expressed as

The integration yields

(o).–:~; &-&‘%
)(

b.’lf (#A@
uw—zfw+~

)

Ti%en equation (A6) is expressed in terms of r,y coordinates,
the formuIa obtained is

and is given as equation (10) in the text. -:



EVALUATIONOF

The intograI expression for the potential

APPENDti B

POTENTIALFUNCTIONFOR ROLL

may be evaluated by the same method used in appendix A.

upon substitution of the new variables and simplification, equation (Bl) becomes

where the limits of integration are obtained from figure 13. .

When the integrations indicated in equation (B2) are performed, the following expression is obtained:

( 1+3m bM
)J(4)?=*, Vw–~uw +.y

‘ 1—WC

)(

bM——
)

.—vw+~
‘w l+?nuw ‘w

Equation (B3) transformed into z,g coordinates becomes

p [2@3(2?n+ 1)+ t@(m+ 1)-2?iaz] \/2(B’+ TM) (b –2y)
(d)?=~—’ [(1+ ?n)B]’/’

(Bl)

(B2)

(B3)

@4) ~

and is given as equation (21) in the text.
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